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An ALE Finite Element Method for Baffled Fuel 
Container in Yawing Motion 
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School o f  Mechanical Engineering, Pusan National University, 

Pusan 609-735, Korea 

A computational analysis of engineering problems with moving domain or /and boundary 

according to either Lagrangian or Eulerian approach may encounter inherent numerical 

difficulties, the extreme mesh distortion in the former and the material boundary indistinctness 

in the latter. In order to overcome such defects ill classical numerical approaches, the ALE 

(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element 

mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element 

formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing 

motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm 

and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical 

works is also presented. 
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1. Introduction 

In the computational mechanics community, 

the numerical analysis and design of the dynamic 

problems characterized by the significant time- 

varying domain had become a great challenging 

research subject during several decades. Needless 

to say, it is because traditional two basic approa- 

ches in describing kinematics of problem, Lagran- 

gian and Eulerian, could not successfully deal 

with both of the excessive mesh distortion and the 

material boundary indistinctness at the same time. 

In other words, the excessive mesh distortion in 

the Lagrangian approach causes either long CPU 

time or instability in numerical computation, 

while the material boundary indistinctness in the 

latter approach makes the boundary identification 
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be a hard task. 

These numerical difficulties can be completely 

and effectively resolved by employing the arbi- 

trary Lagrangian-Eulerian approach. According 

to our research survey, this kinematic description 

concept was introduced originally by Hirt et al. 

(1974) for the finite difference method. But it 

has been extended to the finite element method 

by numerous investigators such as Belytschko 

and Kennedy (1978), Hughes et a1.(1981), Donea 

et a1.(1982) and Benson (1989). The prominent 

feature of this approach is the arbitrary move- 

ment of finite element mesh differing from the 

material velocity. Being defined as a third coor- 

dinates (or a reference domain) additional to 

usual spatial and material coordinates, the finite 

element mesh is adjusted according to a selective 

combination of remeshing and smoothing pro- 

cesses, in order to keep the mesh regularity and 

track down the material boundary exactly. Hence, 

the numerical techniques associated with the de- 

termination of the finite element mesh velocity 

should be accompanied, despite of the term "ar- 

bitrary". 
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In connection with the advances in computa- 

tional techniques, the dynamic response analysis 

of fuel-storage containers of vehicles such as 

automobiles and aircrafts, while being a repre- 

sentative research topic in fluid-structure in- 

teraction, has become a major application prob- 

lem of the ALE numerical method. In fact, the 

structural dynamic behavior of such containers is 

characterized by the strong dynamic coupling 

between the structure deformation and the com- 

plicated fluid flow (Paidoussis, 1998; Cho and 

Song, 2001). However, early studies (Abramson, 

1966; Bauer, 1966) before the introduction of the 

ALE method) were quite restricted so that the 

reliable and profound dynamic analysis was not 

possible�9 

Meanwhile, the structural stability of fuel con- 

tainers in moving vehicles is greatly affected by 

the hydrodynamic forces by internal fuel flow. 

Hence, most of research efforts have focused 

on how to effectively suppress the hydrodynamic 

force, and several kinds of dynamic damping 

devices were introduced (Miyata et al., 1988; 

Welt and Modi, 1992). Among them, a metallic 

baffle has been reported to be most suitable from 

a practical and installation point of view. And, 

the design of baffled fuel container is performed 

based upon the parametric investigation of struc- 

tural dynamic characteristics to the design vari- 

ables such as the number and the inner-hole size 

of baffles. From the computational analysis point 

of view, however the dynamic analysis of baffled 

case requires more sophisticated techniques, ow- 

ing to the complex fuel flow, like the ALE finite 

element method. 

In this paper, we intend to present an ALE 

finite element method for the structural dynamic 

analysis of baffled fuel container in yawing mo- 

tion. Together with theoretical and numerical 

tbrmulations, the core techniques in the ALE 

approach such as the remesbing and smoothing 

algorithms, the coupled fluid-structure time in- 

tegration scheme and the stability criterion are 

addressed. As well, the numerical results of para- 

metric characteristics of a baffled cylindrical fuel 

container in yawing motion to the major baffle 

parameter are given. 
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2. Problem Description in ALE 
Kinematic  Description 

Figure I shows a baffled cylindrical fuel con- 

tainer of uniform thickness t, with an elastic metal 

baffle of thickness /B and inner-hole diameter 

D~, in which incompressible viscous fuel is filled 

up to the height HF. Throughout this paper, 

subscripts F and B refer to the parameters of fuel 

and baffle, respectively. As usual, the baffle is 

manufactured with the same material as the con- 

tainer, and the number and spacing, the inner- 

hole diameter and the thickness become the major 

design variables. 

When adopting Cartesian coordinate system, 

the structural dynamic motion of the structure 

occupying the spatial domain ~ is governed by 

c~u~ / ~2ui \ 

with initial and boundary conditions : 

ui(O) = z L ( 0 ) = 0 ,  in ~ (2) 

u,=~'~, on 3S2D• (0, T~ (3a) 

ai~n./=t~, on 8s (0, T]  (3b) 

Here, c, p and gi indicate respectively the dam- 

ping coefficient, the structure density and gravity 

acceleration components, while 8~2~ the displace- 

ment boundary region and ~ the common fuel- 

structure interface. Meanwhile, the surface trac- 

tion on the fuel-structure interface is t . n = - p  
by denoting p as the hydrodynamic pressure, and 

the external dynamic loading is acceleration-type 

yawing excitation. 

On the other hand, the unsteady viscous flow of 

interior incompressible fuel occupying the time- 

l u d  
r ~ l o n  
, k 2 . )  

Fig. 1 

~ h n d r  i c a l  l u c l  1~cr 

v 
I i  ~ :  / '  ~ " "  - " 1 ~ 2  

[ 

Definition of geometry and symbols of 
baffled cylindrical fuel container 
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varying spatial domain S2F(t) is governed by the 

mass and momentum conservation laws. And, 

which are expressed in the ALE numerical ap- 

proach such that 

3~i 1 
0t +- ( ~ ' j-  •j) UiO-- OF riJ'J=gi" in s X (0, TI (4) 

ui.i=0, in -QF • (0, T]  (5) 

where ~i and Pv indicate the flow velocity com- 

ponents measured in the mesh referential coor- 

dinates x and the fuel density, respectively. In the 

ALE kinematic description, the convection term 

ujv~.~ in the momentum equations in Eulerian 

kinematics is substituted with (uj--~j)  u;,j ac- 

cording to the difference between the material 

velocity and the mesh velocity ~ (Donea et al., 

1982). By denoting the kinematic viscosity of 

fuel by /2, the stress tensor z',.j is constituted as 

follows : 

Vii : ~l ( Vi,j ~- US, i) - -  P ~ i j  (6) 

The time-varying boundary af2r(t) of the fuel 

domain is composed of the flee surface a.Q s and 

the fuel-structure interface 0-Qz such that 0,QF= 

c3,Q s U a ~ .  Then, the momentum equations are to 

be solved with the initial and boundary condi- 

tions given by 

vi(x,  O)=0, in Q,~, (7) 

c3ui 
u ~ = ~ / - ,  on 3~z • (0, T]  (8a) 

ri~nj=t', on 3,Q s • (0, T]  (8b) 

where t'~ are the traction components acting on 

the fuel free surface. 

The major difficulties in the time integration 

of the ALE flow equations (4) and (5) are caus- 

ed by the presence of the convection term and 

the incompressibility constraint. Broadly spea- 

king, there exist two methods to implement those 

according to conventional two approaches used 

in Eulerian fluid mechanics, the operator split 

method (Donea et al., 1982; Benson, 1989) and 

the fully coupled time integration method (Ken- 

nedy and Belytschko, 1981 : Hughes et al., 1981). 

In the former method, the time integration 
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is divided into two phases, Lagrangian and Eu- 

lerian ones. Of course, the Lagrangian phase is 

solved first by neglecting the convection term, 

and then the necessity of mesh smoothing is ex- 

amined. If needed, the Eulerian phase is followed 

in order to take the convection term due to the 

mesh smoothing into consideration. This method 

breaks a complex problem into simpler one and 

the second phase is not needed at all time stages, 

but the convection effect and the incompressibility 

are treated in a rather approximation manner. 

On the other hand, a severe difficulty in the 

latter method is to get the flow velocity satisfying 

the incompressibility constraint. In order to re- 

solve this problem, the fractional concept stem- 

ruing from Chorin's method had been adopted. 

Where, the momentum equations (4) were solved 

first by introducing an intermediate velocity 

which does not satisfy the incompressibility con- 

dition, while decoupling the pressure gradient 

term from Eq. (4). After that, the intermediate 

velocity is corrected by the pressure obtained 

from the continuity equation (5). However, this 

correction process took remarkable numerical 

iterations for the converged velocity. This defect 

can be resolved by employing the C-fractional 

method proposed by Hayashi et a1.(1991) which 

will be described later in details. 

3. Finite Element Approximations 

According to the principle of virtual work, we 

can obtain the weak form of Eq. (1), to which 

we introduce the isoparametric finite element 

approximation lbr the dynamic displacement 

u(x,  t ) = q ) ( x ) ' f t ( t )  with denoting ~ as the 

(3 •  matrix in terms of N basis functions. 

Then, we arrive at the usual numerical system of 

equations given by 

Mu+ Cu+ K{t= F (9) 

in which the load vector F is due to the body 

force and the hydrodynamic pressure. 

Next, we do temporal discretization of Eq. (9) 

according to the implicit Newmark constant-av- 

eraged-acceleration method (Bathe, 1996) such 

that 
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= _ _ I ~ C + ( 1 2 _ _ I ~ ) ( A I ) Z K I ~ n  (10) 

- [ C + A t . K ]  u " - K ~ t " + F  "+~ 

where the parameter /3 is 0.25. We note here 
that the load vector F n+t at time step ( n +  1) is 

computed through 

F"+~=F"+ f~,~Pr(p"-p "-') ds (l 1) 

where p indicates the time-step-wise finite ele- 
ment approximation of the hydrodynamic pres- 
sure computed from the Navier-Stokes system of 
Eqs. (4) and (5). In Eq. (10), nodal vectors of 

velocity and displacement at time step ( n +  1) is 
updated through 

u " + ' =  u"+0 .5At  (u"+~+ u n ) (12) 

u n + l = u n ~ - A t u n  ~- ( A t )  2[ ( 0 , 5 - - ~ )  ~n-31- 5 ~ n + l  ] 

(13) 
In order to employ the C-fractional time integra- 
tion method, we first discretize explicitly the flow 
equations in the ALE description, (4) and (5), 
according to the Crank-Nicolson scheme 

~+~-- l'n 1, '~ - �89  rin,+~ ~ =gi 14) 
At ~ ( ~ * - ~ )  "' p,~ 

/~n+t=0 15) 

with 
1 1 1 n+--__ n+ n+ ~ : j , j 2 - - ~ i ,  j j 2 - - p ,  i 2 16) 

1 u,  = un+~= (3un__ un-~)/2 17) 

The relation u~+~=2un--u n-~ is used for Eq. 

(17). Then, Eq. (14) can be rewritten as follows: 

u7 +~-~'~ ~ , , + � 8 9  z n+! ~)i,jj 2 

" pr (18) 
A t (  , ^,  . + 1 _  u~ - u~ ) A ~  z - g ~  
2 

(19) 
1 n+ rt ] 

toe [.ZPi, k # - - g i  

with the initial condition (7) and 
1 1 

(20) 
r,w189189 on &QS 

A simple replacement (u*-- ~ )  u~+�89 = (u*-- ~ )  
n n+l  ~ 2 [u~,j+(u~ --u~),ff ], together with Eqs. (14) 

and (16), is employed to derive Eq. (18). Taking 
divergence to Eq. (14) and enforcing the conti- 
nuity constraint lead to the time-step-wise pres- 
sure equation and boundary conditions given by 

1 ~n.~:�89 I n [ ^n n+! 

n+L 1 [l b' idi 2 - -  g i  
[OF J,i 

(21) 

pn+�89 on 0f2F s (22a) 

p].+zn~= - (3uJOt-Ou~/Ot) n~ 
(22b) 

=7"+~, on 0f2i 

Eq. (22b) is derived by the basic relation • p =  
--prav/Ot, together with the boundary condition 
(20) imposed on 0s and 7 n+l/z is the interface 
boundary data calculated with structure veloci- 
ties. 

The variational forms corresponding to the 
above two semi-discretized equations (18) and 
(21) can be obtained by introducing the virtual 
velocity and pressure, respectively. To which we 
approximate two step-wise variables using iso- 
parametric basis functions, 

v"(x) = r  p"(x )= ~(x ) /~"  (23) 

in which, (~ are the (3 •  matrix and gr the 
(1 •  matrix, constructed with N basis func- 
tions. After the straightforward manipulation, we 
have a set of fully discretized and explicit matrix 
equations : 

1 Grg~_E~+�89189 (24) Hp'+�89 

1 ( ~ . + 1 _  9 n )  t , At  F + A 9  n -  Gpn+~+L~"+~ 

+ ~ - (  Q9"+~+Rp'+�89189  
(25) 

The matrices in above equations are defined in 
Appendix. It is worthy noting that the mesh 
velocity ~n in the matrices is determined in the 
remeshing and smoothing processes. 
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4. R e m e s h i n g  a n d  S m o o t h i n g  

Referring to Fig. 2, the remeshing in our study 

is performed basically through three steps: (SI) 

take f i n = v  * for the whole nodes, and next ($2) 

smooth the relocated mesh, if required. Here, the 

second step is iteratively carried out and split 

into two steps again:  ($2-1) smooth first the 

boundary nodes, and ($2-2) smooth the interior 

nodes. Of course, step (Sl) is identical to the 

remshing in the kagrangian approach. When we 

denote x~ be the current location of free-surface 

node A belbre remeshing, its new location x ~ 

alter step (SI) will be 

0 c XA=XA ~- ~/~A t (26) 

with the mesh velocity v~=~,q. Updating all 

flee-surface nodes generates a new mesh Xm ~ . 

We next decide whether the smoothing is nec- 

essary or not, according to the decision criterion 

described later, and we perform the iterative 

smoothing procedure if necessary. For our study, 

we employ the simple averaging method in which 

the location of node A is smoothed by averaging 

the geometric locations of mA surrounding nodes. 

Referring to Fig. 2(b),  the surrounding nodes of 

a boundary node A are composed of the boun- 

dary nodes of the elements sharing node A. The 

free-surface coordinates x ~ and mesh velocities 

v ~ of all supporting elements can be mapped into 

a 2D bilinear master element. We first smooth 

two tangential coordinate components (on the 

free surface) of node A using the iterative simple 

averaging method : 

l _  l_ , •  I ~ 
(X. ct)A--(X0r)A mmAff.~__(Xa)~t, a = t l .  tz (27) 

where (and hereafter) l refers to the iteration 

cycle ( l = l ,  2, 3, -. ').  While the vertical coor- 

dinates (Xn).4 of the surface nodes alter the sur- 

face smoothing can be interpolated from the sur- 

face geometry befo,e the surface smoothing. Then, 

we obtain the final location x F of boundary 

node A to be moved and the corresponding mesh 

velocity I~=V~ F) from the velocity mapping 

function. 

On the other hand, the surrounding nodes of 

any interior node A are all nodes (except for the 

node A itself) of the elements sharing the node 

A. Then, the location of node A is updated 

through 

l l - -I  _ ~  ~ a  X M  ( 2 8 )  
XA=XA mA M=I 

Then, the final location of interior node A to  

be moved is F t XA=XA with its final velocity ^ n_  ld A - -  

VOA+(XeA--X~)/At. After we smooth all surface 

and interior nodes, we calculate the total liquid 

volume of the mesh and compare the initial fuel 

volume to calculate the volume change A V. In 

order to avoid the volume change accumulation 

along the time incremental process, we correct the 

vertical coordinates of all free-surface nodes ac- 

cording to 

x .  o 

F 
I 

I n i f o r m  d e p t h  
" c o r r e c t i o n  fo r  , S v ~  0 

-- �9 . . . .  r e -  . i 

�9 - , , ) , x~  : 
" . . . . . . . . .  i i 

(a) (b) (c) 
Fig. 2 Three-step mesh update procedure (2D representation) 
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(x~) F = (x . )  ~ - A  V / A  r e a  (3~2SF) (29) 

This completes the remeshing step to obtain the 

final mesh X F with the updated nodal  coor-  

dinates XA F and the mesh velocity 9 n  as depicted 

in Fig. 2(c) ,  which is required for the next-step 

A L E  computat ion.  

5. Numerical  Experiment 

Figure 3(a) depicts a model  container  in uni- 

form horizontal  mot ion with u of  60 m/sec  where 

fuel occupies 50% of the total container  volume. 

The container  is forced to subject a yawing pe- 

r turbat ion such that it rotates right and left ac- 

cording to a yawing cycle : --5.73 ~ --, + 11.46 ~ --, 

+5.73 ~ about  the z-axis  with uniform angular  

velocity ]C0z [=5 .0  rad/sec,  as illustrated in Fig. 

3(b) .  Reminding  that a yawing cycle takes 0.08 

sec, we simulate the yawing mot ion during 0.2s 

in order  for the sufficient investigation of  the 

dynamic response. Meanwhile ,  we intend to ex- 

amine two moment  resultants Mx and Mz, and 

three lbrce resultants -fix, F r  and Fz. In fact, the 

moment  resultant M r  (i.e. the rol l ing moment) is 

not significant in yawing perturbation.  

We record geometry and material data taken 

for our  numerical  experiments in Table  1, in 

which the baffle number,  the installation loca- 

tion and the inner -ho le  diameter  are taken vari- 

able for the parametric investigation. Regarding 

the baffle number  and the installation location, 

we consider  three cases : 0, 1 and 2 with uniform 

spacing. On the other hand, we consider  four 

cases for the relative inner -ho le  diameter  D J D  : 

0.75, 0.5, 0.25 and 0.125. It is worth to ment ion 

that l inear and angular  velocities are numerical ly 

implemented by specifying the t ime-s tage-wise  

linear and angular  displacements along the edges 

of  two side plates. 

Figure 4(a) and 4(b) represent finite element 

meshes of  structure and fuel, respectively, lbr 

which 1,760 [ 'our-node shell elements and 4,580 

three-d imensional  tri l inear solid elements are 

used. Even though total element numbers of  struc- 

ture and fuel meshes vary according to the choice 

of  the baffle number  and the inner hole diame- 

ter, the relative change in total element number  

is not significant. On the other  hand, the speed 

of  sound in fuel is found to be 1,640 m/sec  from 

the fuel density and the bulk modulus  given in 

Table  1. According  to the elementary dynamics,  

i 
I 

D D B  

Mx 

I 

50% fuel 
y . , ' ~  

/ 
, ~  - LB - - - 4  

L 
(a) 

s.73 ~ 

X 
Per tu rha l ion  
illgl I1 lair ", 'e|or 

Z Y "~z = 5 ,0  r a d / s  V = 6 0 in / s  

(h) 
Fig. 3 Model problem description : (a) Model con- 

tainer and dynamic resultants (b) Yawing 

condition 

Table 1 Geometry and material data taken for the numerical simulation 

Material data Geometry data (m) 

Structure Density ps(kg/m 3) 2.78 X l0 3 Diameter of tank D 0.4 
Young's modulus E ( N / m  2) 7.24X 10 z~ Length of tank L 1.0 
Poisson's ratio u 0.33 Structure thickness I 0.00254 
Yield strength d r  ( N / m  2) 4.85 X 10 s Baffle thickness tB 0.003 

Fuel Density pF(kg/m 3) 8.15X 102 Relative fuel amount 50~ 
Bulk modulus K(N/m 3) 2.2• 109 Inner-hole size DB variable 
Kinematic viscosity /~(kg/m-s) 8.15X ]0 -4 Baffle spacing LB uniform 
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we also found that the peak flow velocity does 

not exceed 100 m/sec  within the observat ion time 

period. Then, according to the Courant  cri terion 

(At) c ru<-h / ( c+u) ,  the initial fluid mesh shown 

in Fig. 4(b) with the smallest mesh size requires 

the critical t ime-s tep size (At)crlt  of  1.09 X 10 -~ 

sec. It is worthy noting that the smoothing scheme 

described in Section 4 exhibits rapid conver-  

gence speed so that the smoothing  process satisfy- 

ing the preset tolerance is completed in a few 

iterations. 

Fuel  flow patterns within container  without  

and with a baffle at three subsequent time stages 

are presented in Fig. 5. The  f luctuat ion of  fuel 

Fig. 4 Finite element meshes : (a) Structure ; 

(b) Fuel 

flee surface to the left and right as well as the 

internal fuel f low is shown to be severe with the 

lapse of  time. For  this s imulat ion dur ing 0.2 sec 

after yawing perturbat ion,  almost 45,000 t ime 

iterations are taken. And, the extreme fuel mesh 

distort ion was successfully adjusted according to 

the mesh smoothing process described above. 

Meanwhile ,  the free surface f luctuation becomes 

remarkably suppressed when a baffle is inserted at 

the center, and which confirms the effectiveness of  

baffle as a dynamic damping  device for moving 

fuel container.  

However,  we can not see the considerable  im- 

provement  in the suppression of  free surface fluc- 

tuat ion for the two-baf f le  case compared  to the 

one-baff le  case. A part icular  feature in the two-  

baffle case is that the fuel free surface between 

two baffles keeps stable without  any remarkable  

fluctuation. The parametr ic  effects of  baffle on the 

dynamic pressure resultants exerting on the con- 

tainer are given below. 

T ime  history responses of  three force resultants 

and two moment  resultants to the baffle number  

are presented in Fig. 6 and Fig. 7, respectively. 

As a whole, all of  five resultants show the peak 

response near 0.025 sec after the yawing pertur- 

bation, regardless of  the baffle number.  This 

point  of  t ime is when the container  starts to return 

to the horizontal  posit ion after the first yawing 

perturbat ion to the left, referring to Fig. 3(b) ,  

Fig. 5 Free surface fluctuation of fuel : (a) Without baffle : (b) With one baffle ; and (c) With two baffles 
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(a) 
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' T  " ] 

:i 

Hydrodynamic  force resultants 

J 

I 

" ~ .  I l l ,  r i l e  ] 

�9 T - -  �9 i 

{ : , 

-0 r - -  ~ - -  ~ " ' 02 - -u  ' 

"- ,i 7 

I Imel~e,' l  I ' ime f~' l  I 

(b) (c) 

to the baffle number:  (a) x-force;  (b) y - f o r c e ; a n d  (c) z force 

g ~ ~5 o 13 1515 ,3 , f  

' l ' i m ~  I ~ l ' o  

,t 

c~( ,  o~  ~, w io J i t .  { , : o  

(a) 

1 

J 
I 

: t 

I i l | l e ( , e ~  ) 

T 

[ ' inle(~e,) I'inle(,eel l i m e ( , ~ )  

( b )  

[ B ~ I l l ~  n u m b e ~  - ~ I 

Fig. 7 Hydrodynamic  moment resultants to the baffle number : (a) x moment  : (b) z -moment  
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so the peak response occurrence is natural.  Re- 

garding to the baffle number,  the peaks of  all five 

resultants are lowest when one baffle is installed. 

For  the two-baff le  case, all resultants except for 

the z -moment  become higher than the one-baff le  

case, still more some of  resultants become worse 

than the no-baff le  case. The parametric variat ions 

of  the peaks of  five resultants to the baffle num- 

ber are given in Fig. 8 (a) and 8 (b). This implies 

that the dynamic suppression for the fuel con- 

tainer in yawing perturbation is not monotonic-  

ally improved in propor t ional  to the baffle num- 

ber. 

For  the one-baff le  case showing the best dy- 

namic damping effect, we performed the para- 

metric investigation by varying the baffle inner-  

hole diameter. The parametric variations of  the 

peaks of  three force resultants and two moment 

resultants are presented in Figs. 9(a) and 9(b) ,  

respectively. Except for the z-  and x-moments,  

four resultants produce the lowest peaks when 

the relative inner-hole diameter DB/D is 0.5, with 

the convex-like variation in the peak response. 

For the two exceptional components the para- 

metric variation near this inner hole diameter is 

not remarkable so that the recommendable inner- 

hole diameter is a half of  the container diameter. 

We infer that the fuel flow suppression decreases 

as the inner-hole diameter increases while the 

frictional resistance increases with the inner-hole 

size decrease. 

9.0 

7-5 

6 . o .  

r .  " 

"~ 3.0 

3.2 

2.S 

2.0 

1.6- 

1.2 

0.8 

Z-force 

X-l'o,'ce "~ 

Y-force 

t ~ 
0 I 

baffle llllnl bcr 
(a) 

~ / , - i l l O l n e n |  

\ 
x 

X - l n l l l n e l l |  

baffle nulnbt'r 
(b) 

Fig. 8 Variations to the baffle number : (a) Maxi- 
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6. Conclusion 

An ALE finite element method for the struc- 

tural dynamic analysis of baffled fuel container 

was presented. The fluid mesh smoothing accord- 

ing to an iterative geometric averaging algorithm 

successfully resolved the excessive mesh distortion 

caused by the complex fuel flow. The necessity of 

smoothing process was judged by comparing the 

critical time step size evaluated by the Courant 

criterion with the preset allowable value, and 

which achieved both the numerical stability and 

the minimum CPU time. The coupled fluid-struc- 

ture time integration was performed iteratively by 

the implicit Newmark method and the explicit 

fractional method so that the critical time step size 

was determined by the fluid mesh parameters. 

From the numerical experiments, we found that 

the dynamic response of baffled cylindrical fuel 

container becomes more stable that the case with- 

out baffle, but its improvement is not simply 

proportional to the baffle number. Meanwhile, 

the relative inner-hole diameter produces on the 

whole the best damping effect when Ds/D is 0.5. 
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Appendix: Definition of Matrices 

By defining the divergence-like operator D by 
{ 3/Ox, 3/Oy, O/Oz }r, together with Eq. (23), we 
can easily derive 

(s 'V) v =  (8"rBrI)  ~9, B=Dr(]) (A l) 

Here, I denotes the (3 • identity matrix, and 
~n the step-wise nodal vector of the convection 
velocity (v*--~n). Then, the five matrices in Eq. 
(24) are defined by 

H =  f l~(vgr) rVgr d V  (A2) 

G = L ,  Brgr dV  (A3) 

E = f  ( V ~ ) a ~  r (8"rBrI)  r d V  (a4) 

e"+�89 ~rr:+�89 4~ (AS/ 
JOQt 

bp = f m  (V gr) rg  d V (A6) 

Additionally, we define B=DT(D by denoting 
/~r the (9• differential operator expressing 
the (9• vector of ~7v. Then, the remaining 
matrices in Eq. (25) are as follows : 

F =  f~ q)rq) dV  (AT) 

A =  f~,r (gnrBrI) 0 dV  (AS) 

L /~ = f~-~c j~ r j~ d V (A9) 

q=Lfl:(~"rBTI)~(~"~B~I) a~ d V  (A10) 

R = f ~ r ( s ~ r B r I )  r V g  dV (AI I) 

S = L , ~ r  (~rBrI)  rE d V  (A 12) 

Fn+�89 ( (I)Ttn+�89 (A13) 
d Q r  

b v :  f~,q~rg dV  (A 14) 
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